Final Exam – Review – Problems

Peyam Ryan Tabrizian

Wednesday, May 8, 2013

Note: In all the problems below, V is a finite-dimensional inner-product space (except in problems 1 and 7(a)-(d), where V is just a finite-dimensional vector space)

Problem 1:

Let U and W be subspaces of a vector space V, with $dim(U) \ge dim(W)$. Show that there exists $T \in \mathcal{L}(V)$ such that T(U) = W.

Problem 2:

Suppose $T \in \mathcal{L}(V)$ satisfies $\langle T(e_i), e_j \rangle = 0$ if $i \neq j$ and 1 otherwise (for all *i* and *j*). Calculate $\mathcal{M}(T)$.

Problem 3:

Let T and S be self-adjoint operators on V such that TS = ST. Show that there exists an orthonormal basis of V whose elements are eigenvectors of *both* S and T (that is, S and T are *simultaneously diagonalizable*)

Problem 4:

In the following V^* denotes the set of all linear functionals on V^1 , and given v, $\phi_v \in V^*$ denotes the functional $\phi_v(u) = \langle u, v \rangle$.

Define $\Phi: V \longrightarrow V^*$ by: $\Phi(v) = \phi_v$

Show that Φ is an isomorphism of vector spaces!

¹that is, the set of linear transformations from V to $\mathbb F$

Problem 5:

Let U be a subspace of V, and P be the orthogonal projection on U. Let $J: U \longrightarrow V$ denote the inclusion map, that is, J(u) = u. Show that $J^* = P$

Problem 6:

Let V be an inner-product space and W be any vector space, and $T \in \mathcal{L}(V, W)$. Given $w \in W$, define $S_w = \{v \in V \mid T(v) = w\}$ (the set of vectors in V that map to W). Show that the smallest element \hat{w} of S_w (if it exists)² is orthogonal to any vector Nul(T)

Problem 7: TRUE/FALSE EXTRAVAGANZA!!!

- (a) If U, W, Z are subspaces of V, and dim(V) = dim(U) + dim(W) + dim(Z), then $V = U \oplus W \oplus Z$
- (b) If W is a fixed subspace of V, then $\{T \in \mathcal{L}(V) \mid W \text{ is a } T \text{-invariant subspace of } V\}$ is a subspace of $\mathcal{L}(V)$
- (c) If $T, S \in \mathcal{L}(V)$, and S is invertible, then T and STS^{-1} have the same eigenvalues, including multiplicities
- (d) If $V = \mathbb{R}^2$ and $T^2 = T$, then there is a basis of V consisting of eigenvectors of T
- (e) If $T = S^*S$ for $S \in \mathcal{L}(V)$, then all the eigenvalues of T are nonnegative
- (f) If $\mathbb{F} = \mathbb{C}$, and T is normal and nilpotent, then T = 0
- (g) If $\mathbb{F} = \mathbb{C}$, and ||Tx|| = ||x|| for all x, then there is a basis of V consisting of eigenvectors of T.

²By this we mean that if u is any other vector in S_w , then $\|\hat{w}\| \leq \|u\|$