Final Exam - Review - Problems

Peyam Ryan Tabrizian

Wednesday, May 8, 2013

Note: In all the problems below, V is a finite-dimensional inner-product space (except in problems 1 and $7(\mathrm{a})-(\mathrm{d})$, where V is just a finite-dimensional vector space)

Problem 1:

Let U and W be subspaces of a vector space V, with $\operatorname{dim}(U) \geq \operatorname{dim}(W)$. Show that there exists $T \in \mathcal{L}(V)$ such that $T(U)=W$.

Problem 2:

Suppose $T \in \mathcal{L}(V)$ satisfies $<T\left(e_{i}\right), e_{j}>=0$ if $i \neq j$ and 1 otherwise (for all i and $j)$. Calculate $\mathcal{M}(T)$.

Problem 3:

Let T and S be self-adjoint operators on V such that $T S=S T$. Show that there exists an orthonormal basis of V whose elements are eigenvectors of both S and T (that is, S and T are simultaneously diagonalizable)

Problem 4:

In the following V^{*} denotes the set of all linear functionals on V^{1}, and given v, $\phi_{v} \in V^{*}$ denotes the functional $\phi_{v}(u)=<u, v>$.

Define $\Phi: V \longrightarrow V^{*}$ by: $\Phi(v)=\phi_{v}$
Show that Φ is an isomorphism of vector spaces!

[^0]
Problem 5:

Let U be a subspace of V, and P be the orthogonal projection on U. Let $J: U \longrightarrow V$ denote the inclusion map, that is, $J(u)=u$. Show that $J^{*}=P$

Problem 6:

Let V be an inner-product space and W be any vector space, and $T \in \mathcal{L}(V, W)$. Given $w \in W$, define $S_{w}=\{v \in V \mid T(v)=w\}$ (the set of vectors in V that map to W). Show that the smallest element \hat{w} of $S_{w}\left(\right.$ if it exists ${ }^{2}$ is orthogonal to any vector $N u l(T)$

Problem 7: TRUE/FALSE EXTRAVAGANZA!!!

(a) If U, W, Z are subspaces of V, and $\operatorname{dim}(V)=\operatorname{dim}(U)+\operatorname{dim}(W)+\operatorname{dim}(Z)$, then $V=U \oplus W \oplus Z$
(b) If W is a fixed subspace of V, then $\{T \in \mathcal{L}(V) \mid W$ is a T-invariant subspace of $V\}$ is a subspace of $\mathcal{L}(V)$
(c) If $T, S \in \mathcal{L}(V)$, and S is invertible, then T and $S T S^{-1}$ have the same eigenvalues, including multiplicities
(d) If $V=\mathbb{R}^{2}$ and $T^{2}=T$, then there is a basis of V consisting of eigenvectors of T
(e) If $T=S^{*} S$ for $S \in \mathcal{L}(V)$, then all the eigenvalues of T are nonnegative
(f) If $\mathbb{F}=\mathbb{C}$, and T is normal and nilpotent, then $T=0$
(g) If $\mathbb{F}=\mathbb{C}$, and $\|T x\|=\|x\|$ for all x, then there is a basis of V consisting of eigenvectors of T.

[^1]
[^0]: ${ }^{1}$ that is, the set of linear transformations from V to \mathbb{F}

[^1]: ${ }^{2}$ By this we mean that if u is any other vector in S_{w}, then $\|\hat{w}\| \leq\|u\|$

